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Abstract
Amplitude weighting can improve the accuracy of frequency measurements in
signals corrupted by multiplicative speckle noise. When the speckle field
constitutes a circular complex Gaussian process, the optimal function of
amplitude weighting is provided by the field intensity, corresponding to the
intensity-weighted phase derivative statistic. In this paper, we investigate
the phase derivative and intensity-weighted phase derivative returned from a
two-dimensional random walk, which constitutes a generic scattering model
capable of producing both Gaussian and non-Gaussian fluctuations. Analytical
results are developed for the correlation properties of the intensity-weighted
phase derivative, as well as limiting probability densities of the scattered field.
Numerical simulation is used to generate further probability densities and
determine optimal weighting criteria from non-Gaussian fields. The results are
relevant to frequency retrieval in radiation scattered from random media.

PACS numbers: 02.20.Uw, 11.30.Pb, 12.60.Jv

1. Introduction

In many communication and remote sensing systems, the desired information is carried
in the modulation of the phase of the signal of interest [1, 2]. Perhaps, the most
commonly encountered example is frequency-modulated radio transmission, where the carrier
is modulated to transmit a baseband signal, most often speech [3]. Recovery of the transmitted
information is possible through frequency demodulation, an inverse problem of longstanding
interest, which outputs the time derivative of the signal phase. A similar problem was found
to arise in the determination of particle mobilities using laser light scattering [4]. In this
method, coherent light carries a fringe-crossing frequency caused by the drift of particles
through a suspension that is subject to an electric field. In addition to the linear motion
induced by the applied field, the particles are subject to random Brownian motion that leads
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to multiplicative noise in the detected signal. A new element is thereby introduced in the
frequency demodulation problem, multiplicative speckle noise [5]. The detected light in this
system can be represented mathematically as

S(t) = A(t) exp[i(φ(t) + f t)] = E(t) exp[if t], (1)

which expresses the frequency of interest f corrupted by the speckle field E(t), where A(t)

is the speckle amplitude and φ(t) is the speckle phase. Frequency demodulation converts
this multiplicative noise at the detector into additive noise at the output of the frequency
demodulator, i.e.

ϑ̇ = f + φ̇, (2)

which is the sum of the quantity of interest f plus a random noise component φ̇. Unfortunately,
the phase derivative φ̇ of fully developed speckle is a wildly fluctuating variable [6], and so
estimates of f obtained by averaging over (2) are subject to large errors. Recognizing that large
spike-like fluctuations in the phase derivative occur when the field amplitude approximates
zero, it was proposed that weighting the demodulated signal ϑ̇ by the field amplitude A might
improve frequency estimates [4].

Signals of the form (1) are encountered in various communication and remote sensing
systems. In principle, one could weight the demodulated signal with an arbitrary function of
amplitude f (A) to suppress phase derivative spikes. It was shown in [7] that the variance of
the unbiased estimator

f̂ =
∑N

n=1 f (An)ϑ̇n∑N
n=1 f (An)

= f +

∑N
n=1 f (An)φ̇n∑N

n=1 f (An)
, (3)

where n denote statistically independent measurements, is minimized by choice of f (A) = A2

when the speckle field E(t) constitutes a complex Gaussian process. The properties of the
intensity-weighted phase derivative statistic, i.e. J = I φ̇, are therefore of interest in this
important case. While the analysis was performed assuming a constant frequency offset f ,
such as that encountered in the mobility measurement experiment, the intensity-weighted
result is equally applicable to time-varying frequencies if one performs simultaneous and
independent measurements of f with uncorrelated phase noise.

Although the Gaussian process is the most commonly adopted statistical noise model in
physics and engineering [8], arising as a manifestation of the central limit theorem, many
scattering systems are known to produce non-Gaussian field fluctuations [9]. To investigate
how the intensity-weighted phase derivative statistic performs in non-Gaussian regimes, results
were also developed from a generic non-Gaussian noise model, namely the deep random phase
screen [7]. The phase screen has provided many insights into the scattering problem and has
been applied successfully to model radio wave propagation through the ionosphere [10], optical
scintillation in the turbulent atmosphere and acoustical propagation in the oceans, amongst
others [11].

Another model that has received considerable attention in the context of scattered
radiation, and which is capable of producing both Gaussian and non-Gaussian fluctuations,
is the random walk [12]. In this approach, the field returned from a random medium is
represented as a coherent sum in the complex plane, corresponding to a two-dimensional
random walk. The ensuing mathematical problem is equivalent to that posed by Pearson a
century ago [13], which continues to be of considerable impact and utility in the sciences and
engineering. While the model does not represent a rigorous solution to Maxwell’s equations,
it has a sound physical basis and has contributed significantly towards our understanding of
the scattering problem. Numerous investigations have considered the resultant step length
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or amplitude of such random walks, whose square or intensity is of principal interest in
direct detection systems [14]. However, it would appear that the corresponding phase-related
properties have attracted relatively little attention. In this paper, we develop phase-related
results, appropriate to frequency retrieval in scattered coherent radiation, from the random
walk model.

In section 2, we introduce the random walk model and discuss its applicability to various
scattering systems. In section 3, we obtain the correlation properties and variance of the J
statistic, which returns the optimal frequency estimate when the field constitutes a complex
Gaussian process, in both Gaussian and non-Gaussian regimes. Given that measures of system
performance often require knowledge of detected field probability densities, in section 4
we develop certain limiting densities of the scattered field. Analytical progress beyond
these limiting results is difficult, so in section 5 we investigate the problem using numerical
simulation. The simulation technique allows for a full investigation of the scattered field,
including optimal weighting criteria in non-Gaussian scenarios. In section 6, we close with a
brief summary and conclusions.

2. The random walk scattering model

When modelling the scattering of coherent radiation, it is most appropriate to study the
properties of the two-dimensional random walk [12]

E(r̃, t) =
√

I (r̃, t) exp[iφ(r̃, t)] exp(iωt) =
N∑

n=1

an(r̃, t) exp[iθn(r̃, t)] exp(iωt), (4)

where I (r̃, t) and φ(r̃, t) are the intensity and random phase of a complex field E(r̃, t)

detected at position r̃ and time t . ans are real scattering amplitudes, which depend upon
the properties of the scattering centres, θns are phase shifts corresponding to the path length
between the detector and those scattering centres, and ω is the radiation frequency. It is
important to recognize that the phase of the detected field φ is, in general, quite different from
the scatterer phase shifts θn. Given that we are most interested in the dynamic properties of
the resulting field, we shall simplify the following results by suppressing the explicit position
dependence r̃ , which nevertheless manifests in the phase shifts θn. The representation (4)
provides an appealing model for particle scattering [14], though has also been applied to
continuum scatterers, such as rough surfaces [12], diffusers and extended random media [15].
While the physical applicability of this discrete model is less obvious in the case of continuum
scatterers, there is compelling evidence that it nevertheless provides a useful representation
in certain circumstances. In such cases, the independent field contributions can be associated
with the characteristic scattering scale or correlation length of the continuous random medium.
In this paper, we shall consider ans and θns to be statistically identical and independent random
variables, which will be valid in cases of identical non-interacting particles and continuous
random media when the illuminated volume or surface exceeds its characteristic scale length.

In electromagnetic scattering from particulate media and rough surface scattering when
the wavelength of the radiation is smaller than the dimension of the surface inhomogeneities, it
is often assumed that the independent field contributions in the random walk have no preferred
orientation. This corresponds to phase shifts θ that are uniformly distributed when wrapped
on the interval [−π, π), which results in an unbiased two-dimensional random walk. In rough
surface scattering, the surface height profiles and resulting phase shifts are often considered to
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Figure 1. Wrapped phase shift density, i.e. equation (8), with various phase shift variances: dotted
curve 〈θ2〉 = 1, dashed curve 〈θ2〉 = 3 and solid curve 〈θ2〉 = 10.

constitute Gaussian processes, such that the single interval phase shifts are Gaussian distributed
[12], i.e.

p(θ) = exp(−θ2/2〈θ2〉)√
2π〈θ2〉

, (5)

where 〈θ2〉 is the phase shift variance. The Gaussian phase shift assumption is also encountered
in wave propagation through random media, where phase shifts arise as the path integral over
refractive index variations [15]. When representing the scattered field as a two-dimensional
random walk, the terms in (4) are combined with their phase shifts modulo-2π , such that they
reside in the same branch of the complex plane. It is therefore most appropriate to consider
the wrapped density

p2π (θ) =
∞∑

n=−∞
p(θ + 2nπ) = exp(−θ2/2〈θ2〉)√

2π〈θ2〉
∞∑

n=−∞
exp

[
− (2nπθ + 2n2π2)

〈θ2〉
]
, (6)

which exists on the interval θ ∈ [−π, π). While this is readily expressed as an infinite sum
over hyperbolic cosine terms, a more useful representation follows from the Poisson sum
formula [16], i.e.

p2π (θ) = exp(−θ2/2〈θ2〉)√
2π〈θ2〉

∞∑
n=−∞

∫ ∞

−∞
exp

[
− (2xπθ + 2x2π2)

〈θ2〉
]

exp(−i2πnx) dx, (7)

resulting in the phase shift density modulo-2π :

p2π (θ) = 1

2π

{
1 + 2

∞∑
n=1

exp

(
−n2〈θ2〉

2

)
cos(nθ)

}
. (8)

The result is greater than the uniform density between −π/2 and π/2, and less than it on the
remainder of the interval. However, when the phase shift variance 〈θ2〉 > 10, the difference
between the two is negligible, and the phase shift modulo-2π can be assumed uniform over
the entire interval, as shown in figure 1.
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While the Gaussian density (5) is appealing in the context of certain scattering systems,
one might expect any arbitrary phase shift density p(θ) to approximate a uniform density when
folded under similar conditions, i.e. p2π (θ) = 1/2π . An unbiased dynamic random walk is
therefore likely to emerge whenever the motions of independent scattering centres exceed
the radiation wavelength. This will be the case in many high-frequency scattering systems,
such as electromagnetic propagation through turbid and turbulent media [15] and laser light
scattering from vibrating surfaces [17].

3. Correlation properties of the intensity-weighted phase derivative

Given that the intensity-weighted phase derivative statistic returns the optimal frequency
estimate whenever the speckle field E(t) constitutes a complex Gaussian process [7], it is of
interest to obtain its correlation properties and variance for the model under study (4). For the
complex field E = X + iY , where X and Y are the in-phase and quadrature components of the
field, respectively, the intensity-weighted phase derivative follows as

J = I φ̇ = (X2 + Y 2)
d

dt
arctan

[
Y

X

]
= XẎ − YẊ, (9)

which requires the field to be a differentiable process. While there are mathematical models
for which the first and higher order derivatives do not exist, physical systems invariably deviate
from such abstract idealizations. In practice, it is almost always possible to construct a quantity
that approximates a derivative, which requires a sampling rate sufficiently high to resolve the
characteristic scale or correlation time of the system under study. For the idealized case of
scattering from particles undergoing Brownian motion, the returned phase is continuous yet
non-differentiable, and so it is preferable to characterize phase changes in terms of phase
differences δφ. Taking advantage of the statistical independence between the amplitude A and
the amplitude-weighted phase difference Aδφ when the scattered field constitutes a complex
Gaussian process [4], one can adopt a similar procedure to that outlined in [7] and show that
the intensity-weighted phase difference Iδφ is now optimal when extracting a frequency offset
f . For sufficiently high sampling rates, the discrepancy between the phase difference δφ and
the phase derivative φ̇ becomes one of mathematical formality; hence, we shall proceed with
the phase derivative in analytical developments, though encounter the phase difference in
numerical simulations due to their discrete nature.

The intensity-weighted phase derivative statistic can also be expressed as

J = Im

(
E∗ ∂E

∂t

)
= 1

2i

(
E∗ ∂E

∂t
− E

∂E∗

∂t

)
, (10)

which is reminiscent of the flux density obtained from the continuity equation [16] and is
identical to a quantity recently investigated in the context of phase reconstruction [18]. The
intensity-weighted phase derivative for the random walk follows by inserting (4) into (10), i.e.

J (t) = 1

2

N∑
n,m=1

θ̇man(t)am(t){exp(i[θn(t) − θm(t)]) + exp(−i[θn(t) − θm(t)])}

=
N∑

n,m=1

θ̇man(t)am(t) cos[θn(t) − θm(t)], (11)

where θ̇m correspond to the phase shift derivatives of individual scattering centres, which
will be proportional to their velocities. Continuing with the exponential representation, the J
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statistic correlation function requires evaluating the ensemble average

〈J (t)J (t ′)〉 = 1

4

〈
N∑

n,m,p,q=1

θ̇m(t)θ̇ q(t)an(t)am(t)ap(t ′)aq(t
′)

× (exp(i[θn(t) − θm(t)]) + exp(−i[θn(t) − θm(t)]))

× (exp(i[θp(t ′) − θq(t
′)]) + exp(−i[θp(t ′) − θq(t

′)]))

〉
. (12)

Progress can be made by assuming that ans, θns and θ̇ms are statistically identical and
independent random variables, corresponding to statistically identical scatterers whose
individual scattering amplitudes, positions and velocities are independent. We shall further
assume that θ̇ms are zero mean, corresponding to an equal likelihood of particle motion in all
directions, which simplifies the above expression to

〈J (t)J (t ′)〉 = 〈θ̇ (t)θ̇ (t ′)〉
4

N∑
n,m,p=1

〈an(t)am(t)ap(t ′)am(t ′)〉

× 〈exp(i[θn(t) − θm(t) + θp(t ′) − θm(t ′)])
+ exp(−i[θn(t) − θm(t) + θp(t ′) − θm(t ′)])
+ exp(i[θn(t) − θm(t) − θp(t ′) + θm(t ′)])
+ exp(−i[θn(t) − θm(t) − θp(t ′) + θm(t ′)])〉, (13)

where we have grouped the exponential phase terms into conjugate pairs, and recognize
the phase shift derivative correlation function of the scatterers 〈θ̇ (t)θ̇ (t ′)〉. Averaging
over the phase terms θn, which for an unbiased dynamic random walk are uniformly
distributed on the interval [−π, π), returns contributions of N〈a2(t)a2(t ′)〉 from each of
the four factors in (13) when n = p = m and contributions of N(N − 1)〈a(t)a(t ′)〉2

〈exp(i[θ(t) − θ(t ′)])〉〈exp(−i[θ(t) − θ(t ′)])〉 from the lower conjugate pair when n = p �= m.
All other terms in the summation yield zero contribution. Identifying the field correlation
function

g(1)(t, t ′) = 〈E(t)E(t ′)〉
[〈I (t)〉〈I (t ′)〉]1/2

= 〈a(t)a(t ′)〉〈exp(i[θ(t) − θ(t ′)])〉
[〈a2(t)〉〈a2(t ′)〉]1/2

, (14)

where 〈I (t)〉 = N〈a2(t)〉 is the mean intensity, normalizes the sum of these six non-zero
contributions to

〈J (t)J (t ′)〉
〈I (t)〉〈I (t ′)〉 = 〈θ̇ (t)θ̇ (t ′)〉

{ |g(1)(t, t ′)|2
2

+
1

N

( 〈a2(t)a2(t ′)〉
〈a2(t)〉〈a2(t ′)〉 − |g(1)(t, t ′)|2

2

)}
. (15)

It is interesting to compare this result with that for the intensity correlation function [9]

g(2)(t, t ′) = 〈I (t)I (t ′)〉
〈I (t)〉〈I (t ′)〉 = (1 + |g(1)(t, t ′)|2) +

1

N

( 〈a2(t)a2(t ′)〉
〈a2(t)〉〈a2(t ′)〉 − 1 − |g(1)(t, t ′)|2

)
.

(16)

We note that results (15) and (16) apply to an arbitrary number of scatterers whose wrapped
phase shift densities are uniform, i.e. p2π (θ) = 1/2π .

For a large number of scatterers N , corresponding to a circular complex Gaussian field,
the normalized intensity-weighted phase derivative correlation function (15) simplifies to

〈J (t)J (t ′)〉
〈I (t)〉〈I (t ′)〉 = 〈θ̇ (t)θ̇ (t ′)〉 |g

(1)(t, t ′)|2
2

. (17)
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Figure 2. Normalized variances of intensity 〈I 2〉/〈I 〉2 (dashed line) and intensity-weighted phase
derivative 〈J 2〉/(〈I 〉2〈θ̇2〉) (solid line) with increasing scatterer number N . The squares and circles
are corresponding simulation results.

The corresponding intensity correlation function (16) reduces to the well-known Siegert
factorization theorem [19]

g(2)(t, t ′) = 1 + |g(1)(t, t ′)|2, (18)

which allows the modulus of the field correlation g(1)(t, t ′) to be determined from the more
readily detected intensity correlation function g(2)(t, t ′). Inserting (18) into (17) obtains the
following expression for the correlation of J in the Gaussian limit:

〈J (t)J (t ′)〉 = 〈θ̇ (t)θ̇ (t ′)〉
2

(〈I (t)I (t ′)〉 − 〈I (t)〉〈I (t ′)〉). (19)

Results (15) and (16) also return the normalized variances of the intensity-weighted phase
derivative J and intensity I for arbitrary scattering number N , i.e. in non-Gaussian regimes.
Assuming that the scattering amplitudes are of fixed and equal size, a normalized variance of
the intensity-weighted phase derivative can be defined as

〈J 2〉
〈I 〉2〈θ̇2〉 = 1

2

(
1 +

1

N

)
, (20)

where 〈θ̇2〉 is the variance of the scatterers’ phase shift derivative and the corresponding result
for the intensity variance is

〈I 2〉
〈I 〉2

= 2 − 1

N
. (21)

The normalized variances of the intensity and J statistic are plotted in figure 2 against
increasing scatterer number N . The intensity returned from a single scatterer does not
fluctuate, so has a normalized variance of unity. When a large number of scatterers are
present, which results in a circular complex Gaussian process, the intensity fluctuations are
exponentially distributed with normalized variance 2. By contrast, the normalized variance of
the J statistic falls to half the value of one scatterer in the Gaussian limit. When only one
scatterer is present, the detected field intensity is constant, and so the variance of J is due
solely to the individual scatterers’ phase shift derivative, i.e. 〈θ̇2〉. It is interesting that for a
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Figure 3. Normalized variance of intensity beyond a Gaussian-correlated deep random phase
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6,

where z is the distance, k is the radiation wave number, ξ is the screen’s correlation length and φ0
is its rms phase modulation depth. Lines are analytical approximations (see [7]).

large number of scatterers, when the field’s amplitude and phase fluctuate due to interference
between the returned field contributions, the variance of the estimator 〈J 2〉 falls to half this
value. In this Gaussian limit, the fields’ phase derivative 〈φ̇2〉 is known to have infinite variance
[6], which causes large errors when determining f by averaging over (2). An equivalent result
was found following scattering from a deep random phase screen [7], for which the intensity
and J statistic variances are plotted against increasing dimensionless propagation distance in
figures 3 and 4. In comparison to the random walk results, the curves following scattering
from a smoothly varying random phase screen exhibit regions of heightened non-Gaussian
fluctuations. These occur in the so-called focusing regime, which arises due to the focusing
effects of the screen’s smooth lens-like inhomogeneities. It was previously shown that the
optimal weighting in this focusing regime can deviate significantly from that of the Gaussian
limit statistic. Given that the random walk was constructed from independent and unbiased
field contributions, the resulting field will not exhibit such heightened fluctuations and is
therefore similar to scattering from a diffuse, non-focusing phase screen [9, 11].

4. Probability densities of scattered field parameters

While the above correlation properties provide insight into the scattering process, probability
densities of scattered field parameters are useful when determining system performance
measures such as false alarm rates and misdetection probabilities. The field scattered from a
large number of particles, i.e. N → ∞, is known to constitute a circular complex Gaussian
process. The probability density function (PDF) of the phase derivative in this Gaussian limit
then follows from the result of Rice for a differentiable complex Gaussian process [6]

pG(φ̇) = τc/2(
1 + τ 2

c φ̇2
)3/2 , (22)
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Figure 4. Same as figure 3 but for J statistic. Dotted lines are the results of numerical integration
(see [7]).

where τc given by τ−2
c = −(d2/dt2)g(1)(t)|t=0 can be interpreted as a field correlation time

[7]. The PDF has undefined variance, symptomatic of the extreme fluctuations in this quantity,
and a spread 〈|φ̇|〉 = 1/τc. The corresponding J statistic PDF can be obtained under the same
assumptions, resulting in the symmetric negative exponential density [7]

pG (J ) = 1

2 〈|J |〉 exp

(
− |J |

〈|J |〉
)

, (23)

where 〈|J |〉 = (〈I 〉/2τc). The intensity PDF is governed by the well-known result

pG(I ) = exp(−I/〈I 〉)
〈I 〉 , (24)

where 〈I 〉 is the mean intensity. Probability densities for the intensity I , phase derivative φ̇

and J statistic of a complex Gaussian field are plotted in figures 5(e), 8 and 9, respectively.
It is interesting that the intensity and J statistic densities scale with the number of steps in
the random walk N , whereas the phase derivative density (22) is independent of this quantity.
This is because the phase derivative of a complex process is dependent on the ratios of in-phase
and quadrature components, as opposed to their absolute magnitudes.

Progress with field densities from an arbitrary number of scatterers N requires the scatterer
phase shift properties to be specified. The assumption of jointly Gaussian statistics is appealing
in the context of certain scattering systems and simplifies mathematical calculations. The
single interval phase is then Gaussian distributed (5), which wraps to that form required of an
unbiased random walk, i.e. p2π (θ) = 1/2π , when 〈θ2〉 > 10. Clearly, this choice of single
interval density is not unique and other forms could be adopted: one alternative being the
von Mises density, which has been applied in random walk approaches to electromagnetic
scattering [20]. However, the joint Gaussian assumption also simplifies the phase shift’s higher
order properties, which are required for the phase derivative and J statistic.

The simplest non-Gaussian field results are obtained from a single scatterer, when the
intensity is fixed at unity, so has no effect when weighting the demodulator output. The J

statistic then assumes the statistical properties of the fields’ phase derivative φ̇, which equals
the scatterer phase shift derivative θ̇ in this simplest case. For phase shifts that constitute
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Figure 5. Probability densities for intensity from (a) two, (b) three, (c) four, (d) five and
(e) six scatterers. Parts (a) and (e) also display theoretical curves from equations (36) and (24),
respectively.

Gaussian processes, the phase shift derivative θ̇ will be Gaussian distributed, resulting in the
densities

p1(J ) = p1(φ̇) = p(θ̇) = exp(−θ̇2/2〈θ̇2〉)√
2π〈θ̇2〉

. (25)

Probability densities of φ̇ and J for one scatterer are plotted in figures 6 and 7, respectively,
in which the phase shift derivative variance 〈θ̇2〉 = 0.02.

It is interesting that the phase shift derivative variance of an individual scatterer, i.e. 〈θ̇2〉,
can be related to the correlation time τc of the complex Gaussian field that arises from a large
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Figure 6. Phase derivative densities for one (solid circles) and two (open circles) scatterers. The
curve is the theoretical phase shift derivative density, i.e. equation (25) with 〈θ̇2〉 = 0.02.
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Figure 7. Same as figure 6 but for J statistic. The theoretical curve represents equation (33).

number of scatterers. When the scatterers are of fixed and equal amplitude, and the phase
constitutes a Gaussian process, the field correlation (14) simplifies to

g(1)(t) = exp(−〈θ2〉[1 − ρθ (t)]), (26)

where ρθ (t) = 〈θ(t)θ(0)〉/〈θ2〉 is the phase shift correlation function. The field correlation
time then follows from

1

τ 2
c

= − d2

dt2
g(1)(t)

∣∣∣∣
t=0

= −〈θ2〉 d

dt

(
〈θ2〉 +

d

dt

)
ρθ (t)

∣∣∣∣
t=0

= 〈θ̇2〉, (27)
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where we have recognized that a stationary random process and its derivative are uncorrelated,
i.e. 〈θ̇ (t)θ(t)〉 = 0. This result also relates the phase derivative density’s spread (22) to the
rms phase shift derivative of a single scatterer, i.e. 〈|φ̇|〉 =

√
〈θ̇2〉.

For two scatterers of fixed and equal amplitude, say unity, results can be developed from
their in-phase and quadrature components, i.e.

X = cos θ1 + cos θ2 and Y = sin θ1 + sin θ2. (28)

The fields’ phase derivative then follows from (9) and (28) as

φ̇ = XẎ − YẊ

X2 + Y 2
= (θ̇1 + θ̇2)

2
, (29)

which reveals that the phase derivative density returned from two equal scatterers is also
Gaussian, though rather surprisingly, with half the variance of one scatterer, i.e. 〈φ̇2〉 = 〈θ̇2〉/2.
The J statistic for two scatterers is

J = XẎ − YẊ = (θ̇1 + θ̇2)(1 + cos[θ1 − θ2]). (30)

The probability density of J can be developed from its characteristic function, which averaging
over the uniform phase difference density for [θ1 − θ2] results in

C2(λ) =
〈

exp(iλ[θ̇1 + θ̇2])

2π

∫ 2π

0
exp(iλ[θ̇1 + θ̇2] cos[θ1 − θ2])d[θ1 − θ2]

〉
= 〈exp(iλ[θ̇1 + θ̇2])J0(λ[θ̇1 + θ̇2])〉, (31)

where Jn(z) is a Bessel function [21]. The characteristic function (31) can be simplified by
recognizing that the sum of two Gaussian random variables is another Gaussian variable with
twice the variance, i.e. θ̇1 + θ̇2 = s, where 〈s2〉 = 2〈θ̇2〉. The required density then follows by
averaging over the Gaussian phase derivative variable s and inverse Fourier transforming, i.e.

p2(J ) = 1

2π

∫ ∞

−∞
exp(iλJ ) dλ

∫ ∞

−∞
{exp(iλs)J0(λs)}exp(−s2/2〈s2〉)√

2π〈s2〉
ds. (32)

The integrals are fairly straightforward and result in the probability density of the J statistic
for two equal scatterers

p2(J ) = 1

π
3
2

exp
(−J 2/32〈θ̇2〉)√

32〈θ̇2〉
K1/4

(
J 2

32〈θ̇2〉
)

, (33)

where Kn(z) is a modified Bessel function of the second kind [21]. The density has variance
〈J 2〉 = 3〈θ̇2〉 and normalized variance 〈J 2〉/(〈I 〉2〈θ̇2〉) = 3/4, in agreement with equation
(20) and figure 2. The density (33) is plotted in figure 7, where it can be seen that the Gaussian
term dominates for large values of J . For small J , Kn(z) can be replaced by its small argument
approximation [21], resulting in

p2(J ) ∼ �(1/4)

4π3/2〈θ̇2〉1/4
|J |−1/2, J → 0, (34)

where �(z) is the gamma function [21], which diverges at the origin. The corresponding
intensity from two scatterers is

I = |exp(iθ1) + exp(iθ2)|2 = 2 + 2 cos(ϕ), (35)

where ϕ = θ1 − θ2, whose density is governed by the standard result

p2(I ) = p(ϕ)

∣∣∣∣dϕ

dI

∣∣∣∣ = 1

2π sin(ϕ)
= 1

π
√

I (4 − I )
, (36)
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which is plotted in figure 5(a) and is often associated with randomly phased sine waves [1]. It
is of interest to note that both the intensity and J statistic densities share the same divergent
asymptote at the origin.

Evaluation of the phase derivative density pN(φ̇) and intensity-weighted phase derivative
density pN(J ) is difficult for larger scatterer number N . While the phase derivative can be
expressed in terms of in-phase and quadrature components, such as that encountered between
(28) and (29), the complex form of this quantity makes analytical progress difficult when
N > 2. Some progress can be made with the intensity-weighted phase derivative statistic.
Returning to (11), the characteristic function of this variable for arbitrary N is

CN(λ) =
〈

exp

(
iλ

N∑
n,m=1

θ̇m cos[θn − θm]

)〉

=
〈

exp

(
iλ

N∑
m=1

θ̇m

)
N∏

n�=m=1

exp(iλθ̇m cos[θn − θm])

〉
. (37)

Averaging the phase differences [θn − θm] over a uniform density simplifies this result to

CN(λ) =
〈

exp

(
iλ

N∑
m=1

θ̇m

)
N∏

m=1

J
(N−1)
0 (λθ̇m)

〉
= 〈

exp[iλθ̇ + (N − 1) ln[J0(λθ̇)]]
〉N

, (38)

which remains to be averaged over the Gaussian phase shift derivative density (25) and inverse
Fourier transformed. While analytical progress is difficult, result (38) may find utility in
numerical evaluations. We remark briefly that the corresponding intensity density is given by
Kluyver’s integral representation [22]

pN(I) = 1

2

∫ ∞

0
uJ0(u

√
I )JN

0 (u) du, (39)

which follows from the intensity’s characteristic function. However, the required averaging
and inversion is more straightforward in this case, since unlike the J statistic, the intensity I is
independent of the scatterers’ phase shift derivative θ̇m. Kluyver’s result can then be evaluated
as a Fourier–Bessel series for arbitrary N .

5. Numerical simulation

Analytical progress with the phase derivative φ̇ and intensity-weighted phase derivative J is
difficult when more than two scatterers are present. An alternative method of investigation
is to numerically simulate the addition of random rotating phasors, corresponding to the sum
of scattered field contributions in (4). The simplest scenario, which was adopted to derive
the previous probability densities, is to combine phasors of unit amplitude. The dynamic
properties of the field then arise solely from constructive and destructive interferences between
independent phasors.

The starting point in the simulations is the generation of N independent phase shifts
{θ1, θ2, . . . , θn, . . . , θN }, corresponding to the N scattering centres (4). For an evolving
random walk, each individual phase shift θn constitutes a sequence of correlated random
numbers, i.e. θn = {θn1, θn2, . . . , θnM}, which trace the motion of a single scatterer over M

time steps �t . The discrete nature of the simulation technique returns differences, as opposed
to mathematical derivatives, though the approximation can be made sufficiently accurate. The
set of phase shifts {θ1;1,2,...,M,, . . . , θn;1,2,...,M,, . . . , θN;1,2,...,M} then represents the evolution of
the N scatterers over the observation interval M�t . Following from section 4 we shall assume
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that the individual phase shifts are Gaussian distributed (5), which allows sequences to be
generated using standard numerical techniques. The simplest approach takes delta-correlated
Gaussian random numbers and multiplies them by the spectrum of the phase shift correlation
function, i.e. � [〈θ(t)θ (0)〉], where � corresponds to a Fourier transform. Application of an
inverse Fourier transform then returns a sequence of correlated Gaussian random numbers that
constitute a single phase shift realization θn. This filtering process requires the phase shift
correlation to be specified, a simple candidate being the single scale ξ Gaussian form

〈θ(t)θ(0)〉 = 〈θ2〉 exp

(
− t2

ξ 2

)
, (40)

whose spectrum shares the same functional form. Using the result 〈θ̇2〉 = −(d2/dt2)

〈θ(t)θ(0)〉|t=0 from equation (27), the corresponding phase shift derivative variance can be
identified as 〈θ̇2〉 = 2〈θ2〉/ξ 2. This parameter fully characterizes the probability densities of
φ̇ and J developed in section 4.

Given N independent phase shift sequences, the resultant intensity values can be calculated
as

IN,m = |EN,m|2 = |exp(iθ1,m) + exp(iθ2,m) + · · · + exp(iθN,m)|2, (41)

which will be of length M , and the J statistic as

JN,m = Im

(
E∗

N,m

EN,m − EN,m−1

�t

)
, (42)

which will be of length M − 1. The phase derivative of the resultant field can be evaluated
from the real and imaginary contributions of each of the N independent phasors, though a
simpler implementation follows from (41) and (42) as

φ̇N,m = JN,m

IN,m

(43)

which will be of length M − 1.
To preserve the accuracy of the simulation technique, the scattered field contributions

should be unambiguously resolved. Visualizing the field from a single scatterer as a unit
phasor rotating in the complex plane, it is apparent that the rotation between successive values
should be maintained less than π , i.e. |θn,m − θn,m−1| � π , which for a time step �t requires
�t |dθ/dt | � π . This can be evaluated in an rms sense for the autocorrelation of interest (40)
and results in the maximum time step

�tmax = πξ√
2〈θ2〉

. (44)

In the simulations, phase shift sequences θn of duration M�t = 213 were generated with time
step �t = 1, correlation length ξ = 100 and variance 〈θ2〉 = 100. Following from equation (8)
and figure 1, the folded phase density of individual sequences p2π (θ) can be assumed uniform
on [−π, π), and so the coherent sum of phasors will perform an unbiased dynamic random
walk. The rms phase shift derivative with these parameters, i.e.

√
〈θ̇2〉 = √

0.02 ≈ 0.14, is
significantly smaller than the maximum phase difference π , which is reflected in the maximum
time step �tmax ≈ 22 being significantly greater than that of the simulations �t = 1.

The sequences returned from the simulations can be binned to produce full probability
densities for the intensity I , phase derivative φ̇ and J statistic. All densities were obtained by
binning results from 1000 independent field realizations. The intensity PDF of one scatterer
is a delta function positioned at unity. The intensity PDFs of 2–6 scatterers are plotted in
figure 5. The results for two, three and four scatterers can be seen to deviate significantly
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Figure 8. Phase derivative densities for three (solid circles) and six scatterers (open circles). The
curve is the theoretical prediction for a complex Gaussian process, i.e. equation (22).

from the negative exponential form predicted in the Gaussian limit, i.e. equation (24). The
complex form of these densities is dependent on the number of ways that phasors can construct
to yield a given intensity value. While the intensity is always confined to be less than N2, the
returns from five or more scatterers, corresponding to the intensities plotted in figures 5(d)
and (e), are often assumed to approximate a complex Gaussian process [23]. We also note
that the intensity PDFs compare favourably with previous evaluations of their corresponding
Fourier–Bessel series [24]. The phase derivative PDFs from one and two scatterers are plotted
in figure 6. As predicted by equation (29), the phase derivative returned from two scatterers
is also Gaussian distributed, though with half the variance of one scatterer. The PDFs for
three and six scatterers are plotted in figure 8, both of which are heavy-tailed distributions that
indicate φ̇ is a wildly fluctuating variable even for small scatterer number. For four or more
scatterers, the phase derivative PDF is well approximated by the prediction for a complex
Gaussian process (22). The densities’ heavy tails are due to the phase derivative ‘spikes’ that
occur when the field encircles the origin, which is a well-known phenomenon in frequency
demodulation [3]. J statistic densities for one and two scatterers are plotted in figure 7. The
result for one scatterer is the same as the particle’s phase shift derivative density (25), and the
two-scatterer density matches the analytical prediction (33). For increasing scatterer number,
the density broadens into a symmetric negative exponential, which agrees with the theoretical
prediction (23) when N = 6, as seen in figure 9.

It is interesting that phase derivative spikes do not arise from two equal scatterers, when
constructive interference can only produce field zeros, and not fields that pass through and
encircle the origin. In fact, the case of exactly equal scatterers is a special one. In practice,
any difference in the scattering amplitudes, or the presence of additive noise, will cause the
resultant field to encircle the origin. This means that, in practice, the phase derivative variance
will not be simply equal to one half of the variance of phase derivatives of the individual
scatterers. For scattering amplitudes of unity and r , the phase derivative is given by

φ̇ = J

I
= θ̇1 + r2θ̇2 + r(θ̇1 + θ̇2) cos[ϕ]

1 + r2 + 2r cos[ϕ]
. (45)
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Figure 9. Same as figure 8 but for J statistic. The curves are theoretical predictions from
equation (23) with N = 3 and 6, respectively. Note that the theoretical prediction scales with mean
intensity 〈I 〉 = N .

The characteristic function of this variable can be averaged over the Gaussian distributed θ̇1

and θ̇2 and inverse Fourier transformed to yield the phase derivative density

p2(φ̇|r) = 1

π
√

2π〈θ̇2〉

∫ π

0
dϕ

(1 + r2 + 2r cos[ϕ])√
(1 + r cos[ϕ])2 + (r2 + r cos[ϕ])2

× exp

[
− φ̇2

2〈θ̇2〉
(1 + r2 + 2r cos[ϕ])2

{(1 + r cos[ϕ])2 + (r2 + r cos[ϕ])2}
]

. (46)

While analytical progress is difficult, the integral can be evaluated numerically for arbitrary r

and can be shown to reduce to the expected limits when r = 1, i.e. two equal scatterers, and
r → ∞, i.e. effectively a single scatterer. The density (46) is plotted in figure 10 for various r .
When r > 1, the density has a Gaussian body and heavier tails due to the origin encirclement
phenomenon. The characteristic function of the J statistic follows from the numerator of (45)
as

C2(λ) = 〈exp[iλ(θ̇1 + r2θ̇2)]J0[λr(θ̇1 + θ̇2)]〉, (47)

where we have averaged over the uniformly distributed ϕ. Substituting the expression [21]

J0(z) = 1

π

∫ π

0
exp[iz cos[ϕ]] dϕ (48)

into (47) allows the averages over θ̇1 and θ̇2 to be performed. Application of an inverse Fourier
transform returns the J statistic density

p2(J |r) = 1

π
√

2π〈θ̇2〉

∫ π

0
dϕ

1√
(1 + r cos[ϕ])2 + (r2 + r cos[ϕ])2

× exp

[
− J 2

2〈θ̇2〉{(1 + r cos[ϕ])2 + (r2 + r cos[ϕ])2}
]

, (49)

which also reduces to the expected limiting densities when r = 1 and r → ∞. The integral
can be evaluated numerically and is plotted in figure 11 for those same values of r evaluated
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Figure 10. Phase derivative density from two scatterers with scattering amplitudes unity and r = 1
(solid line), r = 1.01 (dashed line), r = 1.1 (dotted line) and r = 2 (dash-dotted line).
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Figure 11. Same as figure 10 but for J statistic.

above. It is apparent that the J statistic density (49) is less sensitive than the phase derivative
density (46) to small changes in the cross-sectional ratio r . This behaviour can also be inferred
from (45), since as r → 1 the phase derivative φ̇ can take on arbitrarily large values. However,
in the limit when r = 1, the phase derivative φ̇ reduces to the prediction of equation (29). For
three or more scatterers, small variations in the scattering amplitudes away from unity will be
less significant because the resultant phasor is always able to encircle the origin.

Numerical simulation can also be used to investigate of the optimal form of amplitude
weighting f (A) when the field constitutes a non-Gaussian process. It was shown in [7] that
for an arbitrary complex noise process, the optimal function of amplitude weighting is the
reciprocal of the phase derivative’s conditional variance, i.e.

f (A) = 〈φ̇2〉−1
A =

(∫ ∞

−∞
φ̇2p(φ̇|A) dφ̇

)−1

. (50)
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Figure 12. Optimal form of amplitude weighting f (A) for two scatterers (squares), three scatterers
(closed circles) and six scatterers (open circles). The solid line is the curve A−2 corresponding to
intensity weighting.

When A and φ̇ are the amplitude and phase derivative of a complex Gaussian process [6], result
(50) returns 〈φ̇2〉 = 1/A2, confirming that the J statistic is ideal in this important case. To
obtain f (A) from simulation data, one stores amplitude values AN,m = √

IN,m in tandem with
their corresponding phase derivative values φ̇N,m. By using a suitable sorting algorithm, the
amplitude values AN,m are arranged in order of magnitude, making sure that each value retains
its associated phase derivative value φ̇N,m. The sorted amplitude sequence is then split into
segments, for which the corresponding phase derivative variance is evaluated. By minimizing
the bin width of each amplitude segment, i.e. having a large number of bins over any given
amplitude range, one obtains the variance of φ̇ conditional upon amplitude, i.e. 〈φ̇2〉A. This
quantity is evaluated for two, three and six scatterers in figure 12. The curve for two scatterers
indicates that the optimal amplitude weighting is A0, i.e. no power of amplitude. This is
because the phase derivative from two equal scatterers is independent of the field amplitude,
which can be seen in equation (29). However, as mentioned above, two equal scatterers
are somewhat idealistic, and in practice phase derivative spikes could arise from additional
noise and slight differences in scattering amplitudes. When such spikes occur, some form of
amplitude weighting will be appropriate to suppress their effects. The optimal weighting curve
for three scatterers displays a discontinuity in the slope at unit amplitude, which is where the
peak in figure 5(b) occurs, and exhibits an A−2 dependence at lower amplitude values. When
more than three scatterers are present, the functional form of optimal weighting approximates
intensity over the entire amplitude range, which is that result predicted for a complex Gaussian
process.

6. Discussion and conclusions

In this paper, we investigated the phase derivative φ̇ and intensity-weighted phase derivative
J returned from a two-dimensional random walk. The correlation properties and variance
of J were obtained for the case of an unbiased random walk. Unlike in the case of a field
scattered beyond a smoothly varying random phase screen [7], the normalized variance of
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the J statistic was found to decrease monotonically and saturate to that result predicted for
a complex Gaussian process. This suggests that intensity weighting can be adopted without
incurring serious error under all fluctuation conditions generated by the random walk model.
Furthermore, one might expect this assertion to apply more generally in diffusely scattered
waves that do not exhibit heightened non-Gaussian intensity fluctuations. We also note that the
correlation properties of the J statistic are proportional to the scatterers’ phase shift derivative
correlation function, i.e. 〈θ̇ (t)θ̇ (t ′)〉, and hence velocity correlation, which provides a means
to determine certain properties of individual scatterers from the detected field.

By assuming that the positions, and resulting phase shifts, of individual scatterers are
Gaussian distributed, probability densities were obtained for φ̇ and J from one and two
scatterers. These results were found to be in excellent agreement with numerical simulation,
which was then used to investigate the field returned from a larger number of scatterers.
The phase derivative density for three scatterers was found to possess heavy tails, and the
density for a larger number of scatterers converges rapidly to that result predicted for a
complex Gaussian process. The J statistic densities were also found to converge rapidly to
the Gaussian prediction. The optimal function of amplitude weighting was determined from
simulation data, and the results confirm that intensity weighting can be adopted for arbitrary
scatterer number without incurring serious error.

While the amplitude and intensity properties of two-dimensional random walks have
received considerable attention in the context of scattered coherent radiation, few results
exist for their phase-related properties beyond the Gaussian limit. The results of this paper
should therefore find utility in phase sensitive detection and frequency retrieval from radiation
scattered by random media. It is worthwhile noting that a closely related problem arises in
the spatial domain in radars, where angular ‘glint’ errors reduce the radars ability to track the
target barycentre [25, 26].
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